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Geophysical Framework of the
Southwestern Nevada Volcanic Field
and Hydrogeologic Implications

By V.J.S. Grauch,! David A. Sawyer,? Chris J. Fridrich,2 and Mark R. Hudson?

Abstract

Gravity and magnetic data, when integrated with other
geophysical, geological, and rock-property data, provide a
regional framework to view the subsurface geology in the south-
western Nevada volcanic field. We have loosely divided the
region into six domains based on structural style and overall
geophysical character. For each domain, we review the subsur-
face tectonic and magmatic features that have been inferred or
interpreted from previous geophysical work. Where possible, we
note abrupt changes in geophysical fields as evidence for poten-
tial structural or lithologic control on ground-water flow. We use
inferred lithology to suggest associated hydrogeologic unitsin
the subsurface. The resulting framework provides a basis for
investigators to develop hypotheses for regional ground-water
pathways where no drill-hole information exists.

We discuss subsurface features in the northwestern part
of the Nevada Test Site and west of the Nevada Test Sitein
more detail to address potential controls on regional ground-
water flow away from areas of underground nuclear-weapons
testing at Pahute Mesa. Subsurface features of hydrogeol ogic
importance in these areas are (1) the resurgent intrusion below
Timber Mountain, (2) a NNE.-trending fault system coincid-
ing with western margins of the Silent Canyon and Timber
Mountain caldera complexes, (3) anorth-striking, buried fault
east of Oasis Mountain extending for 15 km, which we call
the Hogback fault, and (4) an east-striking transverse fault or
accommodation zone that, in part, bounds Oasis Valley basin
on the south, which we call the Hot Springs fault. In addi-
tion, there is no geophysical nor geologic evidence for a sub-
stantial change in subsurface physical properties within a
corridor extending from the northwestern corner of the Rain-
ier Mesa calderato Oasis Valley basin (east of OasisValley
discharge area). This observation supports the hypothesis of
other investigators that regional ground water from Pahute
Mesaislikely to follow aflow path that extends southwest-
ward to Oasis Valley discharge area.

ys. Geological Survey, Box 25046, Mail Stop 964, Denver Federal Center,
Denver, CO 80225.

2ys. Geological Survey, Box 25046, Mail Stop 913, Denver Federal Center,
Denver, CO 80225.

Introduction

The southwestern Nevada vol canic field has been the focus
of extensive geologic, hydrologic, and geophysical investiga-
tions by the U.S. Geological Survey (USGS) and other agencies
for more than 30 years. The studies were conducted in support
of underground nuclear-weapons testing at the Nevada Test Site
and nuclear waste storage activities at Yucca Mountain, funded
by the U.S. Department of Energy (DOE) and its predecessor
agencies. Laczniak and others (1996) summarized the state of
knowledge about ground-water systems in the Nevada Test Site
and Yucca Mountain region and placed constraints on radionu-
clide migration away from contaminated test sites.

Because ground water throughout the area occurs at depths
typically greater than 500 m (Laczniak and others, 1996), stud-
iesmust rely on subsurface information to understand structural
or lithologic controls on ground-water flow. Although a vast
data set of subsurface geologic information from hundreds of
deep (> 600 m) drill holesis available (Ferguson and others,
1994), these data are limited to local areas. The local areas are
primarily near nuclear test sites on the Nevada Test Siteand in
the vicinity of Yucca Mountain, where a high-level-nuclear-
waste repository has been proposed. Thus, many important
guestions remain that are pivotal to defining ground-water flow
paths beyond these local areas (Laczniak and others, 1996). In
particular, the deep ground-water system south and southwest of
Pahute Mesais poorly characterized. Better subsurface knowl-
edge of thisareais crucia for evaluating the possible flow paths
away from the testing areas at Pahute Mesa (fig. 1).

In the absence of drill-hole information, geophysical meth-
ods provide the best information on major subsurface features
that may be controlling ground-water flow. Moreover, where
drill-holeinformation is present, geophysical methods provide
important toolsfor interpolating data between drill holes. In this
report we use geophysical data, especially gravity and magnetic
data, to develop an integrated geophysical framework of the
southwestern Nevada vol canic field. The framework is based on
the extensive geophysical interpretations by previous investiga-
tors and on recent interpretations from new geophysical, geolog-
ical, and rock-property information west of the Nevada Test Site.
We identify subsurface features that have potentia hydrogeo-
logic importance and provide more detailed evaluation of fea-
turesin the vicinity of potential flow paths from Pahute Mesa.
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Figure 1.

Map showing approximate extent of the southwestern Nevada volcanic field (SWNVF, thick dashed line) in

relation to major geographic features. Upland areas are shaded; alluvial areas are shown in white. Also shown are the study
area (figs. 3-7; bold solid line), Nevada Test Site (NTS, solid line), Nellis Air Force Base Range (dash-dot line) and Yucca
Mountain. Inset shows location of map area and Walker Lane belt.

Regional Setting

The southwestern Nevada volcanic field isin the southwest-
ern Great Basin near and within several sensitive Federal facili-
ties, including the Nevada Test Site, Yucca Mountain, and Nellis
Air Force Base Range (fig. 1). The Great Basin, with its pro-
nounced pattern of elongated mountain ranges and intervening
basins, evolved as aresult of regional crustal extension that took
place during middle to late Cenozoic time. This extension repre-
sents the latter stages of adiverse history of tectonism, volcan-
ism, and sedimentation, where younger events overprinted older
eventsin ways that are sometimes difficult to unravel.

In Late Proterozoic and early Paleozoic time, nearly 5.5 km
of marine carbonate and clastic sediments were deposited on
Proterozoic crystalline basement in the southwestern Nevada
volcanic field region. An additional 2.5 km of sediments were
deposited during Devonian to Mississippian time, when marine
sedimentation was intermixed with periods of major

compressional tectonics throughout the Great Basin (Trexler
and others, 1996). In Late Cretaceoustime, small granitic stocks
intruded major thrust faults and related folds in Paleozoic sedi-
mentary rocks. The thrust faults may be Mesozoic, or perhaps as
old as Permian (Snow, 1992). Inthe early Tertiary, from 45to 17
Ma, while much of the rest of the Great Basin was experiencing
widespread ash-flow eruptions and episodes of extension
(Noble, 1972; Christiansen and Yeats, 1992), the southwestern
Nevada volcanic field region experienced minor volcanism and
perhaps major episodes of tectonism.

From 17 to 9 Ma, the southwestern Nevada volcanic field
developed as aresult of episodic, voluminous magmatism and
variably intense extension (Sawyer and others, 1994; Hudson
and others, 1994). Thefirst part of this tectonism predates the
southwestern Nevada volcanic field, at perhaps 16 Ma (Fridrich,
1999). Magmatism began at about 15.2 Ma and culminated in
voluminous rhyolite eruptions from acomplex of large ash-flow
calderas between 12.8 and 11.4 Ma. After this period of intense
volcanism, activity began to wane and change to bimodal

2 Geophysical Framework of the Southwestern Nevada Volcanic Field and Hydrogeologic Implications



rhyolite-basalt magmatism followed by entirely basaltic erup-
tions. The silicic ash-flow tuffs and lesser silicic and mafic lava
flows of the southwestern Nevada volcanic field cover an area of
>10,000 km? and reach thicknesses of 4 km or more in the cen-
ter of the field (Ferguson and others, 1994). Each of the silicic
ash-flow tuffsis associated with one or more calderasin the cen-
ter of the volcanic field. Extension around the perimeters of the
southwestern Nevada volcanic field occurred during and after
the episode of magmatism but varied in intensity, timing, and
style from areato area (Hudson and others, 1994). From 9 Mato
the present, volcanism and tectonism in the southwestern
Nevada volcanic field have progressively declined.

The southwestern Nevada volcanic field is associated with
some distinctive geophysical characteristics that are uniqueto
Nevada. The central area of overlapping caldera complexes cor-
respondsto alarge, regional gravity low that includes the lowest
valuesin the State (Saltus, 1988a). This gravity minimum led to
the discovery of the mostly buried Silent Canyon caldera com-
plex (Heaey, 1968). Along the southern edge of the southwest-
ern Nevada volcanic field, a change in upper-crust lithology and
mantle elevation is expressed as mgjor east-trending gradientsin
topography, gravity, heat flow, crustal thickness, and aeromag-
netic data (Eaton and others, 1978; Saltus and Thompson, 1995).
The southwestern Nevada volcanic field areais situated at the
southeastern termination of the Walker Lane belt, a 100- to 300-
km-wide by 700-km-long northwest-trending zone of irregular
topography, discontinuous strike-dlip faults, and northwest-
trending linear magnetic anomalies near the southern Nevada—
Cdliforniaborder (fig. 1) (Stewart, 1988; Blakely, 1988). To the
east of the southwestern Nevada volcanic field, including most
of eastern Nevada, isaregion of generally low magnetic charac-
ter known as the “quiet zone,” the significance of which is still
unclear (Blakely, 1988).

Hydrogeologic Background

Regional Hydrology

The study areais within the Death Valley ground-water
system (Winograd and Thordarson, 1975; Waddell and oth-
ers, 1984; Harrill and others, 1988; Laczniak and others,
1996). Recharge areas for the system are the high mountain
ranges of central and southern Nevada, primarily to the north
of the southwestern Nevada volcanic field. Ground water is
transmitted generally southward at depths of more than 500
m through predominantly carbonate aquifers on the east and
through predominantly volcanic aquifers and possibly allu-
vial aquifers on the west. Ground water within the eastern,
carbonate-aquifer-dominated area discharges at springsin Ash
Meadows (fig. 2) (Winograd and Thordarson, 1975; Laczniak
and others, 1996). Ground water within the western, volcanic-
aquifer-dominated area discharges at springsin OasisValley
and through evaporative processes at Alkali Flat (fig. 2)
(Waddell and others, 1984; Laczniak and others, 1996).
Within the Nevada Test Site, the two different aquifer areas
are separated by along, nearly continuous structural block of

Paleozoic confining units that create a northerly trending
ground-water divide marked by a regional-scale hydraulic
gradient (fig. 2) (Laczniak and others, 1996).

In the area of extensive drill-hole control at Pahute Mesa,
Blankennagel and Weir (1973, plate 1) identified a prominent,
120-m change in water level that they considered to be a
hydraulic barrier. More recently, O’ Hagan and Laczniak
(1996) have reclassified the feature as a water-level disconti-
nuity (fig. 2). Based on subsurface geologic data (Hedl ey,
1968; Orkild and others, 1968; Sawyer and others, 1994), the
location of the discontinuity coincides with the western mar-
gin of the Silent Canyon caldera complex (fig. 1). However,
no hydrologic data exist to constrain the southern extent of
the discontinuity.

Hydrogeologic Units

Although the region can be generally divided into
carbonate-aquifer-dominated versus vol cani c-aquifer-dominated
systems, the hydrogeol ogy of these systemsisnot simple. Large
lateral changes in subsurface thickness and character of rocks
are common. These variations mostly result from (1) primary
variationsin geometry and thickness of rock units, (2) structural
deformation of pre-Tertiary and, to alesser extent, Tertiary
rocks, (3) secondary thermal-related or diagenetic processes that
have altered the mineralogy or physical properties of the rocks,
and (4) fracturing that has changed permeability (Laczniak and
others, 1996). In addition, faults can be important either as con-
duits for or as barriers to ground-water flow.

From aregional perspective, the southwestern Nevada vol-
canic field region can be subdivided into nine hydrogeologic
units (Laczniak and others, 1996). The following brief descrip-
tions of these hydrogeologic units are from Laczniak and others
(1996) and Cole and others (1994).

The sedimentary rocks of Late Proterozoic and Paleozoic
age, which have atotal undeformed thickness of about 10 kmin
the southwestern Nevada vol canic field region, comprise four of
the hydrogeologic units: the quartzite confining unit (3 km
thick), the lower carbonate aquifer (4.2 km thick), the Eleana
confining unit (as much as 2 km thick), and the upper carbonate
aquifer (1 kmthick, only locally preserved). The quartzite con-
fining unit forms the hydrologic basement of the Death Valley
flow system, above which the lower carbonate aquifer transmits
the greatest flow of ground water relative to other aquifersin the
region. The Eleana confining unit, designated by Laczniak and
others (1996), includes rocks that were previously considered
part of the Eleana Formation but are now considered to be part
of the Chainman Shale (Cashman and Trexler, 1991). However,
we keep the Eleana name for the sake of consistency. The unit
consists of clastic sedimentary rock that is as much as 2 km
thick in this area, but, due mostly to structural deformation in
the subsurface, the unit is confined to a narrow band ringing the
southern and eastern interface between the southwestern Nevada
volcanic field and the carbonate aquifer system. The upper car-
bonate aquifer is not geographically significant.

The hydrogeologic unit termed “granite” consists of
granitic intrusions that are scattered throughout the region.

Hydrogeologic Background 3
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YM, Yucca Mountain. From Laczniak and others (1996). Also shown is the water-level discontinuity (WLD) of O'Hagan and Laczniak (1996).

These include Mesozoic intrusions that intrude pre-Tertiary The Tertiary section is acomplex assemblage that includes
sedimentary rocks and Tertiary intrusions related to caldera welded and nonwelded tuffs, lava flows, and minor clastic and
resurgence or late-stage magmatism. Intrusions consist of crys- carbonate sedimentary rocks. Individual rock units may be
talline rocksthat, in this region, are generally impermeable to variable in hydrologic properties both vertically and laterally.
ground-water flow. Thus, although particular geologic units cannot easily be
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assigned to one hydrogeol ogic unit, three hydrogeol ogic units
are generally characterized by rock type: lava-flow aquifer,
welded-tuff aquifer, and tuff confining unit. Welded-tuff and
lava-flow aquifers transmit ground water primarily through frac-
ture permeability. Although somewhat less productive than the
carbonate aquifers, these volcanic aquifers dominate in the west-
ern part of the southwestern Nevada volcanic field. The tuff con-
fining unit mainly refersto nonwelded tuffsin which the
primary permeability was destroyed during alteration of the vol-
canic glass to zeolites and other secondary minerals.

The valley-fill aguifer, which consists of upper Miocene to
Holocene aluvium, is an important component of the saturated-
zone hydrologic system of the southwestern Nevada volcanic
field region only within afew deep alluvial basins where the
water table is generally shallow. Outside of these basins, allu-
vium represents the unsaturated zone.

Geophysical Background

Geophysical studies of the southwestern Nevada volcanic
field have been conducted for decades concurrently with geo-
logic and hydrologic studies and have provided constraints on
the subsurface distribution of rock typesin the upper crust. The
geophysical methods that have been employed include gravity;
ground-based and airborne magnetic methods; seismic reflection
and refraction; teleseismic, heat-flow, borehole-geophysical, and
avariety of deep-looking electrical methods, primarily the mag-
netotel luric method. Mgjor results of these studies for the Yucca
Mountain area are summarized in Oliver, Ponce, and Hunter
(1995). Geophysical resultsfrom other areas of the southwestern
Nevada volcanic field and the Nevada Test Site are scattered in
the literature (much of which is not easily available), although
some early results are summarized in Eckel (1968).

Although results derived from these different types of geo-
physical data provide invaluable constraints on knowledge of
the subsurface, al but gravity and magnetic data are acquired
either at individual locations or along profiles, so that informa-
tion is concentrated only in certain areas. In this report, we
focus on the gravity and magnetic data to give aregional map
view of the subsurface. The interpretations of the gravity and
magnetic data, however, result from integration with the results
of other geophysical methods, subsurface drilling information,
and geologic mapping. Many of the interpretations rely heavily
on the efforts of previous workers. Our detailed discussions
concentrate on recently reported interpretations that incorpo-
rate new aeromagnetic data west of the Nevada Test Site
(Grauch and others, 1997).

Gravity Data

Data for more than 19,000 stations were extracted from
Bouguer gravity data compiled from Saltus (1988a) and Harris
and others (1989) by McCafferty and Grauch (1997) then inter-
polated onto agrid at 100-m intervals. A regional field based on
an isostatic model was removed to isolate the gravity effects of
rocksin the upper crust (Simpson and Jachens, 1989; fig. 3). The
parameters used for the regional field were the same as those
used by Saltus (1988b) for the State of Nevada.

The typical value of 2,670 kg/m? that is used to reduce
gravity datais too large to be representative of subsurface densi-
tiesfor large areas of the southwestern Nevada volcanic field
(Kane and others, 1981; Snyder and Carr, 1982; table 1). Mea-
surements within boreholes indicate that local density variations
can be abrupt and unpredictable, depending on depth, structure,
degree of welding, alteration (particularly zeolitization, which
decreases density significantly), and water saturation (Healey,
1968; Snyder and Carr, 1982, 1984; Carroll, 1989; Ferguson and

Table 1. Estimated reduction densities for different rock types of certain areas within the southwestern Nevada volcanic field and

the probable hydrogeologic units associated with those rock types.

[Hydrogeologic units are from Laczniak and others (1996) with the following modifications: Volcanic aquifersinclude welded-tuff aquifers and lava-flow
aquifers; volcanic confining units include tuff and other volcanic confining units; carbonate aquifer includes lower and upper carbonate aquifers. SWNVF,

southwestern Nevada volcanic field; NTS, Nevada Test Site]

Reduction gensity Lithology and area Probable hydrogeologic units References

(kg/m°®)

2,000 Nonwelded tuff and aluvium, especially ~ Volcanic confining units; valley-fill Snyder and Carr (1982, 1984); Ponce
in Crater Flat and Y ucca Mountain area aquifers and Oliver (1995)

2,200 Tuff and volcanic rocks for central
caldera complexes, except for resurgent  Volcanic aquifers and confining units ~ Kane and others (1981); Healey (1968)
areas

2,400 Partialy welded to welded tuff and other
volcanic and intrusive rocks, especially  Volcanic aquifers Kane and others (1981); Ponce and
associated with resurgent domes and Oliver (1995); this study
around the outer margins of caldera
complexes.

2,670 Undivided pre-Tertiary sedimentary and ~ Eleana and quartzite confining units, Healey (1983); Ponce and Oliver
igneous rocks surrounding SWNVF granite (1995)

2,750 Pre-Tertiary carbonates and metamorphic

rocks, especialy in eastern NTSand in
Bare Mountain and Funeral Mountains
area

Carbonate aquifers, quartzite
confining unit

Langenheim (in press); Healey and
others (1984)

Geophysical Background 5



116°

116°15'

116°30"

116°45'

117°

Geophysical Framework of the Southwestern Nevada Volcanic Field and Hydrogeologic Implications

25 KILOMETERS

20

48

30

12

mGal

-23

-41



Figure 3 (facing page). Color map of isostatic residual gravity using a
reduction density of 2,400 kg/m3 (see text for discussion). White areas
show where data coverage was too coarse for interpolation. The
boundary of the Nevada Test Site is shown in white, thick black lines are
domain boundaries discussed in the text and shown on figure 6. The
Oasis Valley discharge area is shown as the “v” pattern.

others, 1994). However, rock types can be divided into several
general groups of density ranges that are useful for looking at
bulk-density averages of the upper crust in the southwestern
Nevada volcanic field (table 1). In figure 3, the isostatic residual
gravity datais based on areduction density of 2,400 kg/m?,
which provides a compromise between the areas of high density
surrounding the southwestern Nevada volcanic field versus areas
of low density within the southwestern Nevada volcanic field.

The gravity signatures of hydrogeol ogic units are neither
consistent nor unique. However, afew general statements can be
made: (1) pre-Tertiary aquifers and confining units have similar
densities and therefore cannot be distinguished by gravity signa-
ture; (2) tuff confining units, if they confine because of strong
zeolitization, are generally less dense than tuff aquifers (Carrall,
1989) because the aquifers generally consist of welded or partly
welded tuffs; and (3) valley-fill aguifers and tuff confining units
have the lowest densities and may not be distinguishable within
aluvia basins (Saltus and Jachens, 1995).

Aeromagnetic Data

Aeromagnetic data for this study were extracted from the
compilation prepared by McCafferty and Grauch (1997), who
merged 14 individual surveys onto acommon observation alti-
tude of 122 m above ground. Most of the areafor the present
study is covered by two detailed surveys, both flown at 122 m
above ground with east-west flight lines spaced 400 m apart
(Kane and others, 1981; Grauch and others, 1993, 1997). A
lower resolution survey coversthe areafrom lat 36°45'N. to lat
37°N. and long 116°37.5'W. to long 116°45' W. It was originally
flown at 300 m above ground with north-south flight lines spaced
800 m apart (Langenheim and others, 1991).

Interpretation of aeromagnetic data for the southwestern
Nevada volcanic field must account for highly variable remanent
magneti zation and topography composed of magnetic rocks
(Grauch and others, 1997). Remanent magnetization of volca
nic rocks and ash-flow tuffsin particular can be quite variable,
ranging from low to high intensities, sometimes within the same
unit. Thus, the total magnetization (vector sum of induced and
remanent component) isimportant to consider rather than just
magnetic susceptibility or paleomagnetic direction (Bath, 1968;
Grauch, 19874). Total magnetizations are the vector sums of
induced and remanent magnetization components, which can be
estimated from natural remanent magnetization and magnetic
susceptibility measurements and the intensity of the Earth’'s
field. In this report we commonly refer to positive- or negative-
inclination total magnetization. Inclinations are measured down
from horizontal and are positive if greater than 25°, negative if
less than —25° and anomalous if in between. Total magnetization
intensities are classified as suggested by Bath and Jahren

(1984): nonmagnetic, <0.05 A/m; weak, between 0.05 and 0.5
A/m; moderate, between 0.5 and 1.5 A/m; and strong, >1.5A/m.
Relative total magnetizations of selected volcanic units for the
study area are presented in table 2.

In general, the total magnetizations of unitsin the study area
are collinear with the Earth’s field direction within 25°, a crite-
rion suggested by Bath (1968) and discussed for this area by
Grauch and others (1997). Given this general collinearity, the
magnetic data were transformed by reduction-to-the-pole (fig. 4)
in order to place anomalies directly over their sources (see
Blakely, 1995).

Magnetic interpretation in areas of rugged topography can
use relations between anomaly shapes and topographic shapesto
determine whether the source of the anomaly composes the
topography or is at depth (Grauch, 1987b). Positive correlation
with topography indicates that rocks composing the topography
have positive-inclination total magnetization; inverse correlation
indicates negative-inclination total magnetization. Lack of corre-
lation with topography or with mapped extent of geologic units
suggests that the magnetic source underlies units exposed at the
surface. Thus, magnetic interpretation in the southwestern
Nevada volcanic field was accomplished by inspection of mag-
netic anomalies compared to topographic shapes, extent of
mapped units, and using input from rock-magnetic-property
measurements (Grauch and others, 1997).

The magnetic signatures of hydrogeologic units, like their
gravity signatures, are neither consistent nor unique. However,
severa genera statements can be made: (1) welded-tuff aquifers
commonly have strong total magnetization; (2) lava-flow agui-
fers commonly have strong total magnetization but are limited
spatialy; (3) tuff confining units are not expected to produce
magnetic anomalies because of ateration; and (4) valley-fill
aquifers, if they are composed primarily of alluvium, have
negligible magnetization relative to volcanic units.

Geophysical-Structural Domains

To afirst order, the isostatic residual gravity map (fig. 3)
shows fundamental differencesin bulk density of the crust that
arerelated to structural relief on the pre-Tertiary basement. The
high values show where dense, pre-Tertiary rocks are near the
surface; the low values show where these rocks are at great
depths, buried by 3 km or more of low-density volcanic rocks
(Saltus and Jachens, 1995). Minor variations in gravity values
can be due to minor relief on the top of pre-Tertiary rocks or den-
sSity variations within pre-Tertiary rocks (table 1).

Regional variations in the magnetic map (fig. 4) are harder
to see than in the gravity map because the magnetic data are sen-
sitive to shallow sources. In order to see regional variations, we
computed the magnetic potential of the data (fig. 5). The mag-
netic potential is an integration of the data (often called pseudo-
gravity—Baranov, 1957; Blakely, 1995). The operation is alow-
pass filter that maximizes the broad variations in the data and
minimizes the local ones. The map has been further filtered by
the terracing method of Cordell and McCafferty (1989) in order
to bring out discrete areas that have similar values, analogousto a
terraced hillside.

Geophysical-Structural Domains 7



; ‘gPuois-ereIBpOW ‘BANSOd

0ST> :MO[JIN0
{006< JopeIenu!

URJUNOA JSquuil L
w0} 0] pawop Apuabinsal N1 Mo|}
-Use pap e ‘snouiwin ejewl pea.dsapim Sr'TT

N1 SHYUe ] eIuoWLLY Bw |

Sy{Ue ] BluowwW Y

w] dnoib ureunoln Jaquirl

X3 |dwod elep e UrIuNo N

(Alrepow ‘aAnsod 00g Jaquil] Joapss 159m uo paydnie youey
43 mo|J-Use pap pm pue see| a}1j0AuY N S1I-op-1n8[d Jo auI0AyY 41
o [dwiod
(Alrepow ‘aAnsod 09 :Jm BJop[Ed URINO A JBguii] Jo Teow
‘07-00€ Sene| Ul paidnie yny parepl pue sene| ailoAyY ZTIV'1T uorewlo4 usep Aieag qiL
ease s||IH Bouy|ing ay1 ui uesaud eiydey
oBuous ‘sanisod 002< uiblew-mo|} pue ‘s||s ‘soyIp Jepas) ueNo N
aleulpJogns pue smo|}ene| a1Aydel | 0T ueAouo( Jo a1Aydes] ujl
rJyde) pareoosse sene|
yArBpow ‘sAlefeu G/T pue ‘sbn|d ‘sswop ‘smo|}alljoAyy G'6-G0T aljoAyl ajiwAuod Jeddn ny1
J1 uoAue) a|1wALI0A JO SOIULD|OA
eJop[ed urUNo N Xde|g
gbuouss ‘sanisod 0ze 0] ulbiew pasodxe sawop pue Smo|}
eAg| 9)AyJe.) pue 811pUBLLIOD BBp [e-81d v'6 H1[O uoqQly Jo s1ipuswiod 11
gekeepow Hm
‘anlebau Mo|jeus G9  MO|}-Use S}IpUSLLIOD ‘PIP M [PESIdSSP I €6 #n1abpry sl ni uRUNO N Ye|d
RJOP[RD URIUNO N
¥ae|g dejono pue |1} Apsed sxool
‘S)00.4 dAlNIUI B1IURAS o1n1iAydiod
PrRpow dAetou 08T pue 2139810 }N) pUe i pale 00sse PRI MO|P A pue Bunds
‘smo 4 ene| 811|0Ays 01 @1Aydel | €6 e|lid Jos300.1 onAydIes] s1i
RJIOP[RD URIUNO N
Je|g Ul uoissaidap asde|joo e uIylIMm
gbuouss ‘sanisod 00G< awop snoushoxe se pade|dwe sene|
a1Ayoen you sk Aen jo souenbeg €6 111D UBpPIH JoaAydel ] uiL
gfeam iy}
‘aA13180d SN [eWLIOLE MO |4-yse pappm ‘auleeed ABuons ST'6 #nl e poo byl ueIUNoO N e
11 dnoub uoAue) Aisiyl
JPuons
‘safire|od paxiw RBYMSP WisIUed oA BRP eI 8Ul ey jesed dnoio
o-BuoIS uoAued Asiiyl Bunexdelq Ajelodwisy s1eseq
‘aAiebau 80P eqoD 1V 00T pue A|e1reds seseq peaidsapim 7166 BbunoA pue uoAued AsiiylL gAL
(ng)ess N
yPuous ‘aansod :ng 00T :ng /82 :ng pfeogong pue (H1) urenon
SOX I JBpss) pUe ‘SMo|jene| Ais1Iy 1 e 1jeseq aud0! A
¢ youUouIS 'BAIRBaU HL 002< :HL ‘SoU0D Jopuid ‘Blsepueiyde) dneseqg GOy HL 1596UNOA pue ausdol|d dA L
gL Sieseq Ateia) Jabunop
(w) ssauxoiyy 2(BIN) abe (a1qeordde j)
mco_:ﬁ_acmme lerol Zunuwixe Ziun jo uonduosag ‘xolddy Hun 2160j089 BISP[RD pale|ay

‘suoneznaubew [e10] aAe|al pue suondiosap J1ay) pue pjal) JIULD|OA BPRASN UISISSMUINOS ay] JO SHIUN JIUBD|OA Pa1J3Jas 7 8] qel

Geophysical Framework of the Southwestern Nevada Volcanic Field and Hydrogeologic Implications

8



o yoUOIIS-91eBpOW
‘annisod

LESM S1UN JBYI0
o-Buouss ‘annsod :yny emo|

00€

004

Hnm
MO|J-yse 811104y pep pM ‘snouiwn e N eVl
eiydol
peppeq PeTeIonsse pue S N1 MO|J-use
911104y SNouIWN [e1eW OM] JO 3ousNnbas YT

Yedd eydlioL Jo ynl by

anng Buidess Jo yny sb

32JN0S UMoUXUN

32JN0S UMOoUXUN

b1 ureyunoly zueng 4o soIUBD|0A

g’feam
‘aAlsod mo|eus

gBOM ‘s)un

0ST-OTT :MO[JIN0
/G eRpEIRIUI

4N MO §-yse pep pmaulie eled L'ET
eIopRD
uo/Aue) a1 asnolo uiylim papuod

}n1 uoAue) asnoio B

uoAue) asnolo

‘anirebou

A|[eo0| ‘0ST :MojjIno
'00G< ®BJop[EIRNUI

1N1 MO|}-Use pep pm ‘snouiun eew
‘PealdsapIM puUe Snouiwn O A 9TT

eJOp[EI SYUe | BlUOWW Y 3y} JO

asde||00 2J0Joq Blop I BSD |\ Jou ey a1

HNLesON Biuey Jw L

aAlsod Apsow pue anirebau 009'T pue paydnie ) paleps pue sene SET-LET uolfew.od 4 ssioypesq pd L
gl dnoib abuey payjeg
oB0PI Wel ] fesu
Buous g'ariepow ‘sAirebeu 44N mo|4-yse 811104y pap pm peadsapim Ve ynluwell 1 £55ed 10108050.d
gPleBpow-3eam SI1iH Boy|ing ut pare103a.q
‘aansod ess N 8Inyed 1 A|eoo| pue paife A|ewsylolpAH
gbuous 0ZT :Mojjino "} mo|y-yse 811 j0AY) ‘pap M
‘annsod 3N BN A JeaN :089 ®epeJenul Ajgetien ‘snouiwun W pesidsap I TN ) #n] Bouyjing go 1L Ocesly
9] dnoib 1eld Jarel)
eloped
0c®ealyayj ul pueeslesi|iH 031D ayl
oem ‘sanisod sy} '002¢< 01 UI'SIUBA WoJy perdnie yjni parep. pue
g-9RBpoW ‘BANIS0d seneT papuod A|jed0| ‘00 See|alljoAys snouiwnerw jo adusnbes 62T uoIrewloH S||IH 021D Je |
(g ©aJy JO SOIUBD|OA
H#ny moy4
geksepow ‘sanisod 0se -Use pap pM Shou LN elslll peadsap A 87T yn] Buuds yedodo] 1d1 92IN0S UMOUMUN
S||1H Bouy|ing ui pesele
gbuons oTT AleweyioipAy Ajjeoo ~ym mojy
‘aAIefoU MO|eys -USe pap pM Snou N LU peaidsep I LT #n] uoAuepenr] ody uoAued weD
‘ureyusg
gPuoIs ‘anirebeu 00  J0811j0AyYd BYISSPN[OU| *}JN) POP PMUOU
paeR. pue sene| 811104yl eiepeo-1sod L2t soH0Ays uoAued el ] -1s0d nd |
d] dnoib ysnigiured
o yoUOIIS-91R.BpPOW 00t 01 papuod

eSO Jeluey

yBuouis ‘aAiefeu 08T< 10 Teow 8Y1 U1 paldnue 1IN psp pMmUOU [IH
aleulplogns paiep. pue sere| 8l 0AuY GSTT wrequauLe | 4o salljoAuy Tew |
panunuo)—uw] dnolb ureluno Jagquil
(w) ssauxoIy 2(eIn) abe (eIqeondde y)
mco_HmN_chm_mE |e1ol Nc.=._c.:v8_>_ Nu_c: Jo co_un_._omwm_ _xo._n_n_< HH_FS o_m_o_owo elap|ed paje|ay

‘panuuo)—suoneziaubew [210] aAe[a. pue suondiosap J1ay) pue piall J1UBD|oA BPRASN UI31SaMUIN0S ay) JO SIUN JIUBD|OA Pa)03|as 'z 8|qel

9

Geophysical-Structural Domains



(G86T) JopAus pue Wequasoy Woldg
"(896T) yreg woud,
"966T 1P "gndun ‘UOSPNH "Y' Nl Wo.idg
"(966T) S18Y10 pue X814 Ag pariodal uoda.ip WwaLewsas A1iejod pasional e Ag paelogollod S1 uoiezieulew eiol :ozm::oEéEﬁmoZm
*Ayde.Bodol pue s13e3u00 2160|006 01 pasedwiod dew diRUGEW JO UONJadSUT WO PaJBJUI UOITeZIBuUbewW 10 "SUSWRINSEalW WO} a[ge|eAR 10U UOITeWIOoul Uo ez subew [e1o L,
"WYY G'T< ‘Buolis ‘w/v G'T pue G0 Ussmiag ‘srelepowl
‘WY §'0 pUe GO'0 UsSMiSq Meam W/ 00 > ‘dlisufiewiuou :(#86T) Usuer pue yreg Aq paissbbns se paijisse|o afe ssiisusiu| * 0 > NG Gz- < 41 9AIRBaU snofewoue pue * Gz- > 41 aAlebau
{0 <pue Gz > jloAnsodsnofewoue ¢ Gz < j19A11Sod peopISUod ale pue [eJuoz Loy WOy UMOp painsea afe suoifeulou| “Ajuo ApAielifenb pejussaid afe synsey "y s UHe3 ays Jo A1susiul
3y} pue sjuswanseaw A11)1gndsasns dreufew pue uoezisufiew JUSUBWS] [eINTeU WO.Y PSTELUISS ‘SiusuodLuLd uoeziiauffiew JUSUBLLSI PUE P3ONPUL JO WNS JOJJA 8Y) S1 uo ez ipufew 1ol
"(966T) S0 pue %294 pue (S66T) SIUI0 pue BAmes woi,
"(66T) SYI0 pue uosnfijeH pue (S66T) SiBU10 pue JoAmes Mmo|jo) sbuidnolb pue saweu nng

Pl Bpow-3eam
‘anIebau SlY 44y mo-yse a1l j0Auy ST Sxead UM Jo yn] 10| 80IN0S umouUN
Pl Bpow-3eam 10U
‘MO|eus dA[efeu SetT MO[}-yse d}1|0AY ‘Snoulwneew ‘pappM €GT HnL fs|eA Yooipay oL 80JN0S uMmouUN
Pl Bpow-3eam MO|J-yse 81110AyJ snouiwn e
‘MO|[eys aAIebau 08 ‘papem Ajrred 01 pap PMUON GO'ST ®HeanA jo yny Lol 92IN0S UMouNqun
0] anng bunds XeQ Jo soluesjop
Plesspow
-feam ‘Mo|feus aAnsod 06 1n1 mo|j-yse pep pm aul ey eled 61 #n1 Buuds gny gni 80IN0S UMOUNUN
awoq hig Jo so1ued|oA
1SVv3 3HL NO SOINVOT0A ¥3d10
yPrlspow ‘annisod SasseWwl AISNIUL pue SMO|Jene] é USjPH UNo A Jo a11oeq wb
1S3IM JFHL NO SOINVITOA ¥3dT0
(w) ssauxIy 2(eIN) abe (elqeoidde 1)
m:o_EN:w:mmE leroL Zunuixeiy Alunjo uonduasaq "xoiddy fiun 2160j089 elap[ea pale|ay

‘panunUo)—suoireznaubew 2101 aAIR[a. pue suondiIoSap JIByl puB p|al) J1UBD|OA BPRASN UISISSMUINOS 8Y) JO SHUN JIUBD|OA Pa1J3[as 7 8] qelL

Geophysical Framework of the Southwestern Nevada Volcanic Field and Hydrogeologic Implications

10



The values on the magnetic potential map (fig. 5) can be
viewed as a general indicator of the relative bulk magnetization
of the upper crust. At great depth, bulk magnetization is likely
dominated by the induced component due to thermal demagneti-
zation of the remanent component (McElhinny, 1973). Thus,
high bulk magnetization may imply the presence of large vol-
umes of igneous rocks of intermediate composition at depth.

The broad regional variations in character on the gravity,
magnetic, and magnetic potential maps show general correspon-
dence to areas that have fundamental differencesin the style,
timing, and magnitude of structural deformation and magmatism
recognized in the southwestern Nevada volcanic field region
(Fridrich and others, 1996). Thus, for ease of discussion of the
geophysical framework, we have divided the region into six geo-
physical-structural domains (fig. 6). These domains are not
strictly defined but are generally (and sometimes subjectively)
based on differences in geophysical characteristics that relate to
differencesin structural style.

Within each domain, we used gravity and magnetic evi-
denceintegrated with other available geologic, geophysical, and
rock-property information to identify and delineate many of the
features shown on figure 7. Precise locations of the outlines on
figure 7 were guided primarily by the maximum horizontal gra-
dients of the gravity or magnetic-potential data, which are com-
monly associated with the surface projections of near-vertical
physical-property boundaries (Cordell, 1979; Cordell and
Grauch, 1985; Blakely and Simpson, 1986). These locations can
be offset downdip if the boundaries have shallower dip (Grauch
and Cordell, 1987). We have only included major features that
cover fairly large areas or have significant linear extent. Those
that can be confidently identified geologically are explained in
table 3 and keyed to the | etter labels on figure 7. Those that are
buried and (or) have not been confidently identified geologically
are discussed in table 4 and keyed to the number [abels on figure
7. Explanations of the interpretations are confined to the tables
where possible. More detailed discussion is given to those fea-
tures within and south and southwest of Pahute Mesa that may
have bearing on regional ground-water flow from Pahute Mesa.

In the following discussions of features within each
domain, we will simplify parenthetical references to features
that are apparent on a particular geophysical figure by listing the
feature number or |etter from figure 7 along with the appropriate
geophysical figure number or numbers. For example, the gravity
feature labeled as 24 on figure 7 and described under feature 24 in
table 4 will bereferenced parenthetically as* (24 compared to fig.
3).” Referenceto figure 7 and the appropriate tableisimplied. To
identify features without comparison to geophysical figures, the
label number or letter will appear with referenceto figure 7, such
as“(ATT, fig. 7).” To locate the features on the geophysical fig-
ures, we highly recommend that the reader prepare a transpar-
ency of figure 7 for use as an overlay.

Timber Mountain Domain

The major domain of the study areaisthe Timber Mountain
domain (fig. 6), which consists of a central area of caldera com-
plexes and bordering areas of thick Tertiary rocks. Thedomainis

characterized by its voluminous Tertiary magmatism (maximum
eruption rate of thousands of km3/m.y.) and alack of the moder-
ate-to-strong late Miocene structural deformation that is evident
in adjacent domains (Hudson and others, 1994). The boundaries
of the Timber Mountain domain are mostly defined as the limit
of the strong gravity low (fig. 3), which locally extends beyond
the area of identified calderas. A notable exception to this defini-
tion isthe Black Mountain caldera, which is associated with a
gravity high (BM compared to fig. 3). The domain is also charac-
terized by moderate to high bulk magnetization (fig. 5) and
numerous high-amplitude magnetic anomalies (fig. 4), caused
primarily by widespread ash-flow tuffs.

The area of low gravity that generally defines the Timber
Mountain domain—and, by inference, the area of thick Tertiary
rocks—extends beyond the margins of the identified calderas
(fig. 7 compared to fig. 3). These surrounding areas probably
represent additional buried calderas in some places and volcanic
and sedimentary fill within tectonic basinsin other places. Bur-
ied (unidentified) calderas are likely present because severa of
the older (pre-13 Ma) ash-flow tuff units of the volcanic field
have sufficient volume to infer that they were g ected from large
calderas, yet no caldera sources for these units have been identi-
fied (Sawyer and others, 1994). Geophysical evidence for buried
calderas are arcuate gravity gradients, such as along the northern
part of the western domain boundary (west of feature 12 com-
pared to fig. 3). Evidence that tectonic subsidence has occurred
in the areaare (1) thick (> 600 m) Tertiary basin-filling volcanic
and sedimentary sequences deposited during the earliest period
of evolution of the southwestern Nevada volcanic field (pre-13.5
Ma) that are in the vicinity of the Rock Valley fault (Rv, fig. 7)
(Hinrichs, 1968) and in two places near Bare Mountain (fig. 6)
(Swadley and Carr, 1987; Monsen and others, 1992); (2) a
buried, pre-13-Ma graben identified in the subsurface in Crater
Flat (26, fig. 7) (Fridrich, Dudley, and Stuckless, 1994); and (3)
linear segments of the boundary of the Timber Mountain gravity
low, which istypical of the gravity signature of atectonic fault,
such as along the central part of the western boundary of the
Timber Mountain domain (24 compared to fig. 3).

Calderas and Caldera-Related Features

The predominant features of the Timber Mountain domain
are calderas and caldera-related features (fig. 7 compared to fig.
6). Identified calderas include the Area 20 and Grouse Canyon
calderas (A20 and GC, fig. 7), comprising the Silent Canyon
caldera complex (fig. 1); the nested Ammonia Tanks and Rainier
Mesa calderas (ATT, ATS and RMT, RMS, respectively, fig. 7), com-
prising the Timber Mountain caldera complex (fig. 1); Black
Mountain caldera (BM, fig. 7), and the Claim Canyon caldera
(Cc, fig. 7). The outlines for these calderas are from Sawyer and
others (1994, 1995), who based their locations on surface geo-
logic contacts, thickness differences between caldera-forming
and post-caldera units, and on scattered to tightly constrained
subsurface drill-hole information (Warren and others, 1985; Fer-
guson and others, 1994). Ferguson and others (1994) interpret
dightly different locations for parts of the caldera margins
within the Silent Canyon caldera complex. The caldera margins

Timber Mountain Domain 11
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Figure 4 (facing page). Color map of reduced-to-pole aeromagnetic da-
ta. Inclination and declination of the Earth’s field used in the transforma-
tion were 62° and 14.5°, respectively. The boundary of the Nevada Test
Site is shown in white, thick black lines are domain boundaries discussed
in the text and shown on figure 6. The Oasis Valley discharge area is
shown as the “v” pattern.

are dashed on figure 7 where locations are based on previous
geophysical arguments (Sawyer and others, 1994). In a modifi-
cation to the margins of Sawyer and others (1994), we have not
drawn the southwestern margin of the Rainier Mesa calderaon
figure 7.

The Grouse Canyon (13.7 Ma; GC, fig. 7) and Area 20
(13.25 Ma; A20, fig. 7) calderas of the Silent Canyon caldera
complex are beneath Pahute Mesa (fig. 1). Both calderas are
completely buried by younger deposits and were first identified
by gravity studies (Healey, 1968; Orkild and others, 1968). Sub-
seguently, more than a hundred deep (> 600 m) drill holes have
defined the subsurface distribution of volcanic units in the com-
plex (Warren and others, 1985; Sawyer and Sargent, 1989; Fer-
guson and others, 1994; Sawyer and others, 1994). The eastern
margin of the Grouse Canyon caldera and the northern topo-
graphic wall of the Silent Canyon caldera complex are reflected
in abrupt changes in magnetic anomaly patterns (fig. 7 com-
pared to fig. 4). The western margin of the complex coincides
with awater-level discontinuity in northwestern Nevada Test
Site (WLD, fig. 2) and amajor gravity gradient, discussed under
the section on NNE.-trending structures.

The oldest caldera of the Timber Mountain caldera com-
plex, the Rainier Mesa caldera, formed in response to the erup-
tion of the Rainier Mesa Tuff (Tmr, table 2) at 11.6 Ma. The
topographic wall of the caldera (RMT, fig. 7) is not tightly con-
strained geologically except along the northeastern margin. The
topographic wall of the younger Ammonia Tanks caldera (11.45
Ma) is probably superimposed on the structural wall of the Rain-
ier Mesa caldera along the southeastern margin (RMS/ATT, fig. 7).
Part of the resurgent, intracaldera dome of the Rainier Mesa
calderais exposed on the west side of the Ammonia Tanks
caldera (near ATT western boundary), but the largest part of the
calderawas stoped by the Ammonia Tanks caldera or is covered
by younger rocks (Sawyer and others, 1994).

The younger caldera of the Timber Mountain caldera com-
plex is the Ammonia Tanks caldera, associated with the Ammo-
nia Tanks Tuff (Tma, table 2). The structural and topographic
margins of the caldera (ATS and ATT, respectively, fig. 7) are well
exposed around most of the caldera. It is a classic resurgent
caldera of the type described by Smith and Bailey (1968), with
isolated exposures of intrusive rocks related to resurgence
located on the southeast side of Timber Mountain (fig. 6) (Byers,
Carr, Christiansen, and others, 1976). The geologic evidence,
combined with analysis of the gravity data, led Kane and others
(1981) to conclude that the broad, low-amplitude gravity highin
this areais the expression of the resurgent intrusion (TM com-
pared to fig. 3). Electrical-data profiles collected over Timber
Mountain also indicated rocks with high resistivities at depth,
typical of intrusive rock (Zablocki, 1979).

Outlining the lateral extent of the Timber Mountain
resurgent intrusion is difficult. Gradients surrounding the gravity
high are moderate, especially to the north, indicating that the

intrusive contacts may slope gently downward and have no iden-
tifiable vertical “edges’ that can be used to define the lateral
extent. Another approach considers the lateral extent most
important for understanding the hydrogeol ogic implications of
theintrusion. Inversion of regional gravity data (V. Langenheim,
written commun., 1997) indicate that the calderafill islessthan
1 km thick within the map area generally outlined by the gravity
contour level of <10 mGal (TM compared to fig. 3). Comparison
of these thickness estimates to ground-water depths expected for
the surrounding area (Laczniak and others, 1996) suggests that
the underlying intrusion may interact with ground water near the
margins of thisarea. Therefore the outline of the area (TM, fig. 7)
is considered the hydrogeologically important lateral extent of
the intrusion. However, the location is approximate because
none of the depth estimates are well constrained.

The Claim Canyon caldera (Byers, Carr, Orkild, and oth-
ers, 1976; Christiansen and others, 1977; Sawyer and others,
1994; Fridrich, 1999) collapsed at 12.7 Ma, accompanied by the
eruption of the Tiva Canyon Tuff (Tpc, table 2). Part of the int-
racaldera dome is exposed south of Timber Mountain, but most
of the calderais beneath the younger Timber Mountain caldera
complex. Gravity values within the exposed part of the caldera
are higher compared to surrounding areas (CC compared to fig.
3), suggesting the presence of aresurgent intrusion, analogous
to the one under Timber Mountain. The caldera margins corre-
spond with an abrupt change in magnetic-anomaly pattern (CC
compared to fig. 4).

The Black Mountain calderais associated with several
eruptive events (Sawyer and others, 1994). The topographic
margin produced by the most recent event (9.4 Ma; BM, fig. 7)
is a contact with precaldera rocks, well-exposed for more than
half of its boundary. A fairly thick (>500 m) sequence of mafic
trachyte present within the caldera (Sawyer and others, 1995)
produces a strong magnetic high (BM compared to figs. 4 and
5). A circular gravity high corresponds fairly well to the caldera
outline (BM compared to fig. 3). Gravity models assuming a
high-density fill within the caldera cannot entirely explain the
lateral extent of the gravity high. Therefore, anintrusion is
inferred at depth (Grauch and others, 1997).

Faults at Pahute Mesa

The eastern part of Pahute Mesa has been the site of
extensive underground weapons tests (fig. 2), which in many
places were detonated near or below the water level (Lac-
zniak and others, 1996). Extensive drill-hole information, in
conjunction with gravity and seismic reflection data, gives
good control on the identification of important faults and rock
units in the subsurface near testing areas (Ferguson and oth-
ers, 1994). Some of the subsurface faults are also expressed in
the magnetic data by changes in magnetic character that occur
across the faults in places but are not consistent along the
lengths of the faults (fig. 8). Thisinconsistency and the strong
amplitudes imply that the magnetic expressions are primarily
due to the juxtaposition of rocks of different magnetic proper-
ties at shallow depths. In particular, the Boxcar (B), Almen-
dro (A), and Scurgham Peak (SP) faults are expressed as

Timber Mountain Domain 13
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Figure 5 (facing page) Color map of magnetic potential (pseudogravity)
data to which the terracing operator of Cordell and McCafferty (1989) has
been applied. This can be viewed as an indicator of the relative values (in
arbitrary units) of bulk magnetization of the subsurface (except where
low values correspond to strong negative anomalies that have wide lat-
eral extent). High values correspond to warm colors; low values to cool
colors. The dotted pattern shows areas of regionally high values (exclud-
ing the Black Mountain caldera, BM), discussed in the text. The boundary
of the Nevada Test Site is shown in white, thick black lines are domain
boundaries discussed in the text and shown on figure 6.

major changes in magnetic values (fig. 8), primarily reflecting
relative differencesin elevation of the shallowest, magneti-
cally significant units.

A prominent WNW.-trending lineament in the magnetic
data can be traced from the eastern side of Black Mountain to the
eastern side of the Timber Mountain domain (18 compared to
figs. 4 and 6). The western part of the lineament is expressed as
the boundary between strong negative anomalies on the northern
side juxtaposed against high magnetic values on the southern
side (fig. 8). The central and eastern parts are expressed as linear
positive anomalies, in places flanked on either side by strong
negative anomalies. The extreme western and eastern parts are
aso expressed by subtle gravity gradients (Kane and others,
1981) (fig. 8). From itslinearity, a structural origin isinferred.
However, its genesis and age in relation to caldera devel opment
are not well constrained.

North-Northeast-Trending Structures

The western margin of the Silent Canyon caldera complex
coincides with a NNE.-trending gravity gradient (14 and 14/SCC
compared to fig. 3) (Sawyer and Sargent, 1989; Ferguson and
others, 1994) and a water-level discontinuity (O’ Hagan and
Laczniak, 1996) (WLD, fig. 2). The gravity gradient extends
south of the complex and past the western side of the Timber
Mountain caldera complex to the valley east of Oasis Mountain
(23, fig. 7). Nearly parallel to and west of the gravity gradientisa
magnetic gradient (13 compared to fig. 4). The magnetic gradient
is best evidenced from the magnetic potential map as the edge of
regional magnetic highs (10 and 11 compared to fig. 5). The
coherency and linearity of these gradients, the abrupt changesin
geophysical character across them (13, 14, and 14/SCC compared
tofigs. 3 and 4), and the relation between the gravity gradient
and the Silent Canyon calderamargin (14/SCC compared to fig. 3)
indicate that they represent mgjor faults at depth that probably
controlled calderaformation.

Regional magnetic highsthat are bounded on the east by the
NNE.-trending structures correspond to moderately low gravity
values (10 and 11 compared to fig. 3). Rough depth estimates
made by models of gravity data, and corroborated by magnetic
gradient analysis, indicate that the source rocks of these regional
magnetic highs extend at least 2 km below the surface. Grauch
and others (1997) concluded that the most likely sources of the
northern regional magnetic high (10 compared to fig. 4) are the
dacite of Mount Helen (Tgm, table 2), the tuff of Tolicha Peak
(Tqt, table 2), and locally the comendite of Ribbon Cliff (Ttc,

table 2) on the basis of comparisons to rock-property, geologic-
mapping, and limited drill-hole information. In addition, they
used the absence of negative magnetic anomalies combined with
geologic evidence of absent or thinning Rainier Mesa Tuff (Tmr,
table 2) to suggest the general absence of the tuff in the area of
the regional magnetic high. Where exposed elsewhere in the
study area, the Rainier Mesa Tuff iscommonly thick, widespread
(Sawyer and others, 1995), and consistently associated with
strong negative anomalies on the aeromagnetic map (Grauch and
others, 1997).

A simple model of a magnetic profile that crosses from the
northern regional magnetic high into the Silent Canyon caldera
complex (fig. 9) shows that three magnetically significant units
(such as the dacite lavas (Tgm), the tuff of Tolicha Peak (Tqt),
and the Rainier Mesa Tuff (Tmr)) can explain most of the varia-
tions in the magnetic data. Variations not modeled can be
explained by variations in thicknesses and magnetizations of
shallow rocks. The first-order variations along the profile can be
explained by the configuration of the bodies attributed to be
dacite lavas. Thisis especially evident by comparing the fit
between observed values after upward continuation by 1 km and
the model values calculated at the same high level (fig. 9).

The regional magnetic high that is south of Black Mountain
and in the Thirsty Mountain area (11 compared to fig. 4) cannot
be explained by exposed units, and therefore the sources cannot
be determined definitively. However, Grauch and others (1997)
determined probable sources based on similarities and proximity
to the regional magnetic high northeast of Black Mountain (10
compared to fig. 4) and expected magnetic properties (table 2).
The probable sources include (from table 2) the dacite of Mount
Helen (Tgm), the tuff of Tolicha Peak (Tqt), Ammonia Tanks
Tuff (Tma), the rhyolite of Fleur-de-lis Ranch (Tff), and locally
the comendite of Ribbon Cliff (Ttc).

Oasis Valley Basin

Thelarge area east of OasisValley discharge area and west
of Timber Mountain (fig. 6) isan area of low gravity values (23
compared to fig. 3), reflecting a thick sequence of moderately
low density rocks, likely Tertiary in age. We call the area“Oasis
Valley basin” to avoid confusion with the name “Oasis Valley,”
which has been informally used to include this areaaswell asthe
discharge area. OasisValley basin is an area of aluvium sur-
rounded by exposures of Tertiary volcanic units (fig. 10). The
area shows very little magnetic signature (23 compared to fig. 4).
Estimates from gravity dataindicate a 5-km thickness of [ow-
density rocks within the area (V. Langenheim, written commun.,
1997). Drill hole MY JO Coffer #1, drilled for oil exploration,
penetrated about 240 m of aluvium in the middle of this area.
The alluvium lies above Ammonia Tanks Tuff, volcanics of For-
tymile Canyon, and younger units (fig. 10). Many of these units
are exposed at the surface nearby (fig. 10).

The area of thick, low-density rocksis bounded (1) on the
west by the major, inferred, north-striking fault, mainly evident
asamajor gravity gradient (24 compared to fig. 3), which we
informally name the Hogback fault; (2) on the south by an east-
trending inferred structure evident in both magnetic and gravity

Timber Mountain Domain 15
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maps (7 compared to figs. 3 and 4), which we informally name
the Hot Springs fault; and (3) on the north by the abrupt, south-
ern edge of aregiona magnetic high (southern boundary of the
stippled arealabeled 11 compared to fig. 4). The eastern bound-
ary and the origin of the thick sequence of low-density rocks
beneath this area are unclear.

The linearity of the gravity gradient that delineates the Hog-
back fault (24 compared to fig. 3) suggestsatectonic origin rather
than acalderaorigin. The lack of low gravity values to the west
of the Hogback fault and the uninterrupted extent of its associ-
ated gravity gradient do not support the presence of a major
caldera collapse west of the fault. Preliminary models for the
gravity gradient indicate a boundary dipping about 45°, which
may represent one or a series of normal faults, down to the east.
This configuration is similar to the stepped-fault model of the
Bare Mountain fault (8, table 4 and references given therein).
The northern extent of the Hogback fault, where it passes along
the west side of the area of Thirsty Mountain basalts (TH, fig. 7),
is paralel to faults mapped at the surface (Minor and others,
1996) and nearly coincides with an east-facing paleoscarp where
Ammonia Tanks Tuff was emplaced against volcanics of Quartz
Mountain (Noble and others, 1991; Sawyer and others, 1995).
Previous workers have interpreted this paleoscarp as evidence
for a caldera topographic wall, although they disagree on the age
of the caldera (Byers, Carr, Orkild, and others, 1976; Noble and
others, 1991). The paleoscarp may be surface evidence of the
inferred tectonic fault or of caldera collapse that was controlled
by the fault.

Evidence suggests that the Hot Springs fault (7, fig. 7) isa
near-vertical transverse fault or accommodation zone (Grauch
and others, 1997). Such evidence includes the steepness of the
gravity gradient on the eastern half of the fault, abrupt changein
magnetic character and linearity across the entire fault, change
in slope of the gravity gradient on either side of the Hogback
fault, and configuration of the Hot Springs fault in relation to the
Hogback and Bare Mountain faults (8 and 24, fig. 7). Geologic
evidence south of the fault indicates a paleoscarp there, with a
depositional basin to the north during and perhaps before the
time of deposition of the Rainier Mesa Tuff (C. Fridrich, unpub.
data, 1996).

Other Domains
Western Domain

The western domain (fig. 6) is characterized by relatively
moderate to high gravity values (fig. 3), indicating generally ele-
vated pre-Tertiary rocks; low to moderate bulk magnetization
(fig. 5); and local, high-amplitude magnetic anomalies (fig. 4).
Preliminary models of gravity dataindicate that the pre-Tertiary
rocks are generally about 1 km below the surface. The gravity
highsin the northern part of the area and in the northern Bullfrog
Hills (2 and BH compared to fig. 3) indicate shallower depths—
less than 500 m below the surface. A depth estimate from mag-
netotelluric data (Furgerson, 1982) indicates a depth of about 1
km to resistive basement at the northeastern end of Springdale
Mountain, the range just northwest of Oasis Mountain (fig. 6).

The western domain underwent acomplex middle Miocene
tectonic and volcanic history, followed by deposition of young
(post-10 Ma) volcanic rocks and alluvium that cover much of the
area. The southern boundary of the western domain (fig. 6) is
generally located along the Bullfrog Hills—Fluorspar Canyon
detachment fault (Maldonado, 1990). The repeated faulting of
the upper plate of this fault is especialy evident in the magnetic
datain the southern Bullfrog Hills by the striped pattern of
north-trending anomalies (the area between BA and 7 compared
tofig. 4), similar to the pattern in Crater Flat and Yucca Moun-
tain (the area between CF and 28 compared to fig. 4) (Bath and
Jahren, 1984). Although many minor faults can be interpreted
from the striped magnetic patterns, only one major fault has been
identified within the western domain (5, fig. 7). This fault marks
an abrupt change between north-south orientation (on the north-
west) and northeast orientation (on the southeast) of the grain of
tilted fault blocks (5 compared to fig. 4). On the extreme west
side of the domain is Sarcobatus Flat (SF, fig. 7), abasin that
developed post-10 Ma (Minor and others, 1991). Thelow gravity
values indicate that thisis a deep basin (SF compared to fig. 3);
the strong, broad, low magnetic anomaly indicates a down-
dropped block of volcanic rock having negative-inclination mag-
netization (SF compared to fig. 4) (Grauch and others, 1997).

In the areas of outcrop, the magnetic expression of volcanic
units can be identified by inspection (CR, OM, SM compared to
fig. 4). Other areas show high-amplitude magnetic anomalies
indicative of volcanic units but are covered entirely by Quater-
nary alluvium (3 and 6 compared to fig. 4). Many exposed volca-
nic units in the northwestern part of the study area (1, fig. 7) do
not correspond in location to magnetic anomalies (1 compared to
fig. 4), suggesting that the magnetic sources are buried.

Theprominent, elliptical gravity low inthenorth-central part
of thedomain (4 comparedtofig. 3) isinanareawith very few rock
exposures and is associated with discontinuities or changesin
character in the magnetic map (4 compared to fig. 4). Analysis of
gravity and magnetic datainthisareaindicatesadepressioninthe
high-density pre-Tertiary rocks (Grauch and others, 1997).
Evidence that supports a caldera origin for the depression is pri-
marily the presence of rhyolite domeswithin the gravity low. The
depression may bethe cal derasource of thetuff of Sleeping Butte
(Tgs, table 2), but uncertaintiesin geol ogi c and rock-property data
prevent definitive conclusion (Grauch and others, 1997).

Southwestern Domain

The southwestern domain (fig. 6) includes Bare Mountain,
the Funeral Mountains, and the intervening Amargosa Valley
(BA, FU, AV, fig. 7). The high to very high gravity values charac-
teristic of the domain reflect near-surface and exposed Pal eo-
zoic and Precambrian sedimentary and metamorphic rocks. At
Bare Mountain, the pre-Tertiary rocks are considered to be the
exhumed lower plate (i.e., footwall) of the Fluorspar Canyon—
Bullfrog Hills detachment fault (Maldonado, 1990; Hoisch and
others, 1997), which is generally located along the northern
boundary of the domain. Within the study areain the Funeral
Mountains, the exposed pre-Tertiary rocks represent thin,
upper-plate rocks above the Boundary Canyon detachment fault

Other Domains 17
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Figure 8. Reduced-to-pole magnetic map of the Pahute Mesa area (map area shown by rectangle on fig. 7), showing inter-
preted features from figure 7, labeled faults, locations of selected major gravity gradients near the northwestern corner of the
Rainier Mesa caldera, and the location of profile A-A’ of figure 9. The gravity gradient locations were determined from maxima
of the magnitudes of the horizontal gradient (Cordell, 1979; Blakely and Simpson, 1986). A, Almendro fault; B, Boxcar fault; BU,
Buteo fault; EG, East Greeley fault; H, Handley fault; P, Purse fault; SP, Scurgham Peak fault; SR, Split Ridge fault; WB, West

Boxcar fault; WG, West Greeley fault.

Figure 7 (facing page). Outlines of interpreted subsurface features to
be used as an overlay to figures 3 and 4. The lettered codes are keyed
to table 3; the numbered ones to table 4. The numbered labels are cir-
cled when referring to a feature other than a fault. The line types for
classes of features are generally as follows: domain boundary, thick
solid line where well-defined, thick dashed line where poorly defined;
inferred faults, medium-thickness solid line where well defined, medi-
um-thick dashed line where poorly defined; caldera topographic walls,
thick dash-dot-dot line where well defined, thick short-dash line where
poorly defined; caldera structural margins, medium-thick dash-dot-dot
line; basins, thin solid line; other features, thin dashed line. The small
rectangles in the northern and central parts of the figure show the ar-
eas of figures 8 and 10, respectively.

(Wright and Troxel, 1993). The two areas are grouped here as
one domain because of their similarity in geophysical charac-
ter. The high gravity values associated with Bare Mountain (BA
compared to fig. 3) extend north of the domain boundary and
the Fluorspar Canyon-Bullfrog Hills detachment fault, reflect-
ing the moderate to shallow dip of the fault to the north and
northwest.

Low magnetic values throughout the domain and over most
of Amargosa Valley (AV compared to fig. 3) indicate a general
absence of volcanic rocks. One exception is the large positive
magnetic anomaly on the Funeral Mountains side of the Amar-
gosaValley, of undetermined origin (9 compared to fig. 3).

Other Domains 19
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Figure9. Simple magnetic profile model demonstrating possible sources of the regional magnetic high northeast of Black Mountain. The location

of profile A-A’ is shown on figure 8. The bold lines and dots are calculated and observed at 122 m above ground; the thin line and plusses are cal-
culated and observed 1,122 m above ground. Total magnetizations assigned to the models are modified slightly from measured values (M. Hudson,
unpub. data, 1996) in order to better fit the data. Declination/inclination and intensity (A/m) of total magnetization for tuff of Tolicha Peak (Tqt) =

24°/46° and 2.15; for Rainier Mesa Tuff (Tmr) = 157°/-32° and 1.08; for the shallower body of dacite lava of Mt. Helen (Tgm) = 357°/58° and 0.9; and
for the deeper body 15°/62° and 0.5. The deeper body is assigned a lower remanent magnetization, likely due to its depth (McElhinny, 1973). For

simplicity, the gray area (undetermined country rock) of the model has zero magnetization. Near the caldera margin, viable models require either
thickening of the modeled Rainier Mesa Tuff (Tmr), changes in magnetization, or variations in other rock units in this area. However, only the model

involving thickening of Tmr is shown.

Southern Domain

The southern domain (fig. 6) is one of the most extensively
studied parts of the map area because it includes Yucca
Mountain, site of the DOE-proposed high-level-nuclear-waste
facility. Many previous workers have discussed geologic and
geophysical studiesin this area, which are too numerous to
review in this paper. The domain is generally characterized by a
moderate magnitude of extension, moderate magmatism (sev-
era to tens of km3/m.y. extruded during the middle to late
Miocene), and by a mixture of structura styles. Geophysically,
this domain has low bulk magnetization (fig. 5), numerous mod-
erately high amplitude magnetic anomalies (fig. 4), and variable
gravity values (fig. 3).

The boundary between the southern and Timber Mountain
domainsin the northern part of Crater Flat is expressed by a sub-
tle changein gravity values (fig. 3) and by abrupt changesin
magnetic patterns (fig. 4). This boundary has also been recog-
nized by previous workers as the southern limit of a broad,
regional, east-trending magnetic high (e.g., Bath and Jahren,
1984; Oliver, Ponce, and Blank, 1995). However, the magnetic
potential map indicates the southern limit of high bulk magneti-
zationisactualy about 10 km farther north (fig. 5). No evidence
of this domain boundary is observed in surface geology nor in

changes of thickness of pre-14-Marocks in the subsurface
(Fridrich, 1999; Fridrich, Dudley, and Stuckless, 1994).

The origin of the broad, regional, east-trending magnetic
high has been the subject of interest and debate because it
extends across the northern part of Yucca Mountain and coin-
cides with a hydraulic gradient (Fridrich, Dudley, and Stuck-
less, 1994). In the area of the Calico Hills (CH, fig. 7), argillite
in the Eleana Formation has a unique magnetic expression that
alowsit to be distinguished from the carbonate units, whereas
it cannot be distinguished from the carbonate units with gravity
data, nor does it have a magnetic signature elsewhere. This
unique magnetic signature prompted speculation that the west-
ern extension of the broad, regional magnetic high is caused by
a subsurface extension of the magnetized Eleana unit (CH com-
pared to fig. 4) (Bath and Jahren, 1984). The presence of the
Eleana confining unit north of Yucca Mountain could also
explain the hydraulic gradient (Fridrich, Dudley, and Stuckless,
1994). However, the magnetic source of the regional highis
estimated at 1.5- to 3.0-km depth (Ponce and others, 1995;
Oliver, Ponce, and Blank, 1995). At the depthsindicated, alarge
volume of magnetic material is required to explain the mag-
netic high. Therefore, a granitic intrusion or batholith is more
likely to be the primary source, perhaps with some contribution
from magnetized argillite (Kane and Bracken, 1983; Carr and
others, 1986; Oliver, Ponce, and Blank, 1995).
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that are not listed in table 2.

Eastern Domain

Another well studied areais the eastern domain (fig. 6),
which locally was intensively drilled and investigated in studies
associated with underground nuclear-weapons testing in Yucca
Flat. The domain is characterized by late Miocene normal fault-
ing and limited Tertiary magmatism. The eastern domain ismore
typical of basin-and-range structure than other parts of the study
area, and the wealth of subsurface information, especially in
Yucca Flat, provides an excellent model for this structural style
elsewhere in the Great Basin. The styleis evident in the gravity
map (fig. 3), as shown by paired, north-trending highs and lows.
The lows (MV, YF, WY, CB, and FF compared to fig. 3) are caused
by aluvial basinsfilled with Miocene-Quaternary alluvium and
underlain by distal tuffs erupted from the southwestern Nevada

volcanic field. The gravity highs (ER, HR, and the area between
YF and WY compared to fig. 3) reflect near-surface pre-Tertiary
rocks. None of therelief on the pre-Tertiary sedimentary surface
can be attributed to caldera tectonism.

The boundary of the Timber Mountain and eastern
domains coincides with the interface between pre-caldera rocks
on the east and caldera-related rocks on the west within the
upper 3 km of crust. Thus, the boundary was drawn to include
theinferred Gold M eadows stock at depth (GM, fig. 7) withinthe
eastern domain. This stock, like the nearby Climax stock (CL,
fig. 7) and some other small plutons not shown, is of Mesozoic
age and therefore predates the main stage of volcanism. This
western boundary of the eastern domain generally corresponds
to the principal ground-water divide in the Nevada Test Site
region (fig. 2), which separates the regional carbonate aquifer

32 Geophysical Framework of the Southwestern Nevada Volcanic Field and Hydrogeologic Implications



systemsto the east from the regional volcanic aquifer systemsto
the west (Laczniak and others, 1996). The boundary of the east-
ern domain with the southern domain is gradational and does not
correspond to any known structure. It generally marks a pro-
nounced change in structural and magmatic style and values of
bulk magnetization (fig. 5).

Southeastern Domain

The southeastern domain (fig. 6) includes structural styles
and characteristic geophysical signaturesthat can be continued
farther to the southeast of the study areato the Spring Mountains
(fig. 1). Theregion is amagmatic, as evidenced by a subdued
magnetic character (Blakely, 1988), and it is characterized by
strike-dlip faulting (Hudson, 1997). The high gravity values
reflect structurally high pre-Tertiary sedimentary rocks (SP and
SR, fig. 7), overlain locally by Cenozoic aluvium. The northern
boundary of this domain is the Rock Valley fault zone (RY, fig.
7), which is an oblique, down-to-the-northwest fault zone
(Burchfiel, 1965; O’ Leary, in press).

Hydrogeologic Implications

The geophysical framework of interpreted, major geologic
features (fig. 7, tables 3 and 4) provides constraints for under-
standing the geologic and hydrogeologic framework of the sub-
surface in the southwestern Nevada volcanic field and vicinity,
especialy where drill-hole control on subsurface geology islim-
ited. Many of the geophysical features show evidence of major
lateral changesin the physical properties of the crust that extend
to depths of 1 km or greater. No matter what their geologic ori-
gin, these geophysical features remain as evidence of major
changesin the nature of the subsurface that may be significant to
the hydrogeology of the area.

Regional Hydrologic and Geophysical Features

Within the southwestern Nevada volcanic field, the change
from volcanic aquifers to carbonate aquifers to the east and
south corresponds to a steep hydraulic gradient (fig. 2) and the
presence of the Eleana confining unit (Fridrich, Dudley, and
Stuckless, 1994; Laczniak and others, 1996). This changeis
expressed geophysically primarily by amajor changein gravity
values between the Timber Mountain and eastern domains
(comparefigs. 3 and 6) and, secondarily, by a changein mag-
netic character (fig. 4). The gravity expression is related to the
difference in subsurface densities between the vol canic rocks
and pre-Tertiary sedimentary rocks in the subsurface.

The same gravity gradient continues to the south and west,
generaly defining the boundary between the Timber Mountain
and southern domains (compare figs. 3 and 6). The gravity gra-
dient also coincides with the regional magnetic gradient that
corresponds to a change in water level seen in subsurface

drilling (Fridrich, Dudley, and Stuckless, 1994), as discussed
previously in the section on the southern domain.

Hydrogeologic Implications West of the
Nevada Test Site

West of the Nevada Test Site, where drill-hole information
islacking, geophysical data provide the best information avail-
able about the subsurface hydrogeol ogy. I nterpretations of such
data constrain the bulk physical properties of the subsurface
from which hydrogeol ogic units have been inferred (fig. 11).
Theinferences are intended to help focus further work, not to
redefine regional ground-water concepts.

Regional ground-water flow is southwestward from the
main area of underground testing at Pahute Mesa toward the
northern part of the western border of the Nevada Test Site (fig.
11) (Blankenagel and Weir, 1973; O’ Hagan and Laczniak,
1996). Figure 11 shows a detail of the area of interest with inter-
pretations and inferred hydrogeol ogic units that were devel oped
from the geophysical framework. The interpretations are dis-
cussed primarily under the section on the Timber Mountain
domain. The following geophysical features have hydrogeologic
significance (referenced to the labels of figure 7 and tables 3 and
4): (1) the WNW.-trending inferred structure (18); (2) the resur-
gent intrusion associated with the Ammonia Tanks caldera (TM);
(3) features near the northwestern margins of the Ammonia
Tanks and Rainier Mesa caldera margins (RMT and gravity gra-
dient); (4) the NNE.-trending structures on the west side of the
Silent Canyon and Timber Mountain caldera complexes (13 and
14); and (5) the Hot Springs and Hogback faults bounding Oasis
Valley basin (7 and 24) and the subsurface rocks that are juxta-
posed at these faullts.

The WNW.-trending inferred structure (18, fig. 7) may in
part be related to the topographic wall of the Rainier Mesa
caldera (RMT, fig. 7). Along the western part of the structure,
whereitstrend is nearly perpendicular to regional ground-water
flow (fig. 11), rocks having significantly different magnetization
directions (as opposed to magnetization intensities) are juxta-
posed within thetop 1 km of crust. Their magnetic signatures
areindicative of moderate to strong total magnetization, asigna-
ture typically associated with unaltered, welded ash-flow tuffs.
The subtle gravity gradient (figs. 8 and 11) indicates only a
minor change in bulk density of the crust. Thus, the lithology
(but probably not the ages) of unitson either side of the structure
could be very similar, suggesting that the structure has minor
hydrogeologic significance.

The area within which ground water intersects with the
resurgent intrusion underneath the Timber Mountain areaiis
approximated by the general outline of the elliptical gravity high
(TM compared tofig. 3; fig. 11), asdiscussed under the section on
the Timber Mountain domain. Electrical surveys across the cen-
ter of Timber Mountain (fig. 11) indicate theintrusion and itsvol-
canic cover have low interstitial and fracture porositiesto depths
of 1km (Zablocki, 1979). If thiselectrical characterizationisrep-
resentative of the resurgent intrusion as awhole, then an exten-
sive barrier to regional ground-water flow from the north of
Timber Mountain could be present in the subsurface (fig. 11).

Hydrogeologic Implications 33
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Figure 11. Detail of the northwestern part of the Nevada Test Site (NTS) and vicinity, showing geophysical features that may be hydrogeologically
significant. Inferred hydrogeologic units at 500- to 1,000-m depth are based on the geophysical-geologic interpretations of figure 7. The text and tables
3 and 4 provide detailed discussion on the limitations and constraints associated with the interpretations of the NNE.-trending structures; WNW.-
trending structure; Hot Springs and Hogback faults; resurgent and other intrusions at Black Mountain caldera, Timber Mountain, and associated with
the Claim Canyon caldera and other caldera boundaries. The significances of the corridor (shown by shading), gravity gradient, and inferred pre-
Tertiary rocks are discussed in the section on hydrogeologic implications. Hydrologic information is from O’'Hagan and Laczniak (1996).
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Between the inferred WNW.-trending structure and the
Timber Mountain resurgent intrusion is a gravity gradient that
generaly trends east-west near the projected northwestern
topographic margin of the Rainier Mesa caldera (fig. 11). The
gradient reflects a subtle, but abrupt, change in subsurface den-
sity that may be related to differences in rocks across the topo-
graphic wall of the Rainier Mesaor Ammonia Tanks calderas, or
across the structural margin of the Rainier Mesa or older
caldera. From geologic inference, caldera margins should be
present in this area, but they are not exposed.

The NNE.-trending structures al ong the western margins of
the major caldera complexes (fig. 11) are probably related to
each other and to caldera formation, as discussed previously in
the section on the Timber Mountain domain. In particular, the
structure that is expressed in the gravity datais coincident with
caldera margins (14/SCC compared to fig. 7) and with the water-
level discontinuity in the northwestern part of the Nevada Test
Site (fig. 11), both of which are known from drill-hole data and
hydrologic pump tests. Such coincident features suggest that the
structure extends to the southwest, where it could also produce
water-level discontinuities.

The structures bounding Oasis Valley basin include the
inferred north-striking Hogback and east-striking Hot Springs
faults (fig. 11) that compose the western boundary of the Timber
Mountain domain. The gravity dataindicate that the domain
boundary here represents the interface between a subsurface
composed primarily of pre-Tertiary sedimentary rocks on the
west and south and primarily low- to moderate-density Tertiary
rocksin Oasis Valley basin (fig. 11). The gravity information
alone cannot distinguish pre-Tertiary confining units from car-
bonate aquifers. However, quartzite exposed near Oasis Moun-
tain (Laczniak and others, 1996) and in the northern Bullfrog
Hills (Minor and others, 1997) adds evidence that the pre-
Tertiary sedimentary rocks west of the Hogback fault are likely
composed mainly of the quartzite confining unit rather than car-
bonate aquifers. Thus, the Hogback fault probably acts as a bar-
rier to ground water flowing westward from the Timber
Mountain domain. No additional evidence on the composition of
pre-Tertiary rocks in the shallow subsurface between the Hot
Springs fault and Bare Mountain is available. If the pre-Tertiary
rocksin this area are composed primarily of confining units, the
Hot Springs fault could also represent a barrier. A barrier at the
Hot Springs fault could explain the presence of springsaong the
east side of Oasis Mountain in OasisValley discharge area (figs.
6, 11). Ground water flowing southward in Oasis Valley basin
might be diverted to the west by the Hot Springs fault and forced
up the moderately dipping Hogback fault.

The configuration of the geophysical features that have
potential hydrogeologic importance (fig. 11) supports the
hypothesis of O’ Hagan and Laczniak (1996) and the results of
more recent hydrologic modeling (U.S. Department of Energy,
1997) that regional ground-water flow from the area of under-
ground testing at Pahute Mesa follows a path southwestward to
Oasis Valley discharge area. In particular, there is no geophysi-
cal nor geologic evidence for a significant change in subsurface
physical properties within a corridor (shading on fig. 11) extend-
ing from the northwestern corner of the Rainier Mesa calderato
OasisVdley basin.
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